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Coloring Problems

• Given a graph/hypergraph assign each vertex a color so that no edge is 
monochromatic.

• General graphs             hardness of approximation

•No polynomial-time algorithm for coloring a graph using 𝑛1−𝜀colors 
unless NP=P (Fiege, Killian, J.Comp’98; Zuckerman, ToC’07).
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Approximate Coloring Problems

• Given a 3-colorable graph find a coloring with minimum number of 
colors.

• Given a 2-colorable 3-uniform hypergraph find a coloring with 
minimum number of colors.



Approximate LO Coloring of a Hypergraph

• Given a hypergraph assign each vertex a color from a linearly ordered 
set of colors so that each edge has a unique maximum.
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Approximate LO Coloring of a Hypergraph

• Given a hypergraph assign each vertex a color from {1,2,3, … } so that 
each edge has a unique maximum.

• Given a 2-LO colorable 3-uniform hypergraph find a coloring using 
fewest possible colors.



Why look at LO Coloring of a Hypergraph?

• Approximate coloring problems

• Barto, Battistelli, and Berg [STACS’21]:

 an almost complete characterization of the tractability for PCSPs 3-
uniform hypergraph with 2 colors under various notions of coloring.

• LO coloring was the only gap in their characterization.

Promise Constraint 
Satisfaction Problems 
(PCSPs).
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Results for 2-LO colorable 3-uniform hypergraphs

• Previous Result (Nakajima, Živný-TCT’22): LO coloring using at most 
෨𝑂(𝑛1/3) colors.

•Our result: LO coloring using at most ෨𝑂(𝑛1/5).

• Concurrent Work (Håstad, Martinsson, Nakajima, Živný-APPROX’24): 
LO coloring using at most 2 log2 𝑛 colors.
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Background: SDPs

• Semidefinite Programing (SDP) problems are optimization problems: 
• Objective: linear
• Constraints:  (a) linear constraints (b)psd-ness constraint. 

Example:
max

 
෍

𝑖,𝑗

𝑐𝑖𝑗𝑥𝑖𝑗

෍

𝑖,𝑗

𝑎𝑖𝑗𝑘𝑥𝑖𝑗 = 𝑏𝑘 ∀𝑘

𝑋 = 𝑥𝑖𝑗  
≽ 0



Background: VPs

• Vector Programing (VP) problems are optimization problems involving 
n-dimensional vectors.
• Objective: linear in inner-products
•  Constraints: linear in the inner-product. 

Example: max
 

෍

𝑖,𝑗

𝑐𝑖𝑗 𝑣𝑖 , 𝑣𝑗  

෍

𝑖,𝑗

𝑎𝑖𝑗𝑘 𝑣𝑖 , 𝑣𝑗 = 𝑏𝑘 ∀𝑘

𝑣 ∈  ℝ𝑛 



Background: SDP and VP

• Fact:  VPs and SDPs are equivalent.

• It is easier to deal with VPs.

• VPs are referred to as SDPs as well.



“Proof” of the result



Integer Program for 2-LO colorable hypergraphs

𝑥𝑖 + 𝑥𝑗 + 𝑥𝑘 = −1

𝑥𝑖 ∈ {−1, +1}

∀ 𝑖, 𝑗, 𝑘 ∈ 𝐸

∀𝑖 ∈ 𝑉

Mapping the colors 1 ⟼ −1 and 2 ⟼ 1 we get:



SDP relaxation for 2-LO colorable hypergraphs

𝑣𝑖 + 𝑣𝑗 + 𝑣𝑘 = −𝑣0

𝑣𝑖
2

 
= 1

∀ 𝑖, 𝑗, 𝑘 ∈ 𝐸

∀𝑖 ∈ 𝑉 ∪ {0}

𝑣𝑖  
∈ ℝ𝑛+1 ∀𝑖 ∈ 𝑉 ∪ {0}
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SDP relaxation for 2-LO colorable hypergraphs

𝑣𝑖 + 𝑣𝑗 + 𝑣𝑘 = −𝑣0

𝑣𝑖
2

 
= 1

∀ 𝑖, 𝑗, 𝑘 ∈ 𝐸

∀𝑖 ∈ 𝑉 ∪ {0}

𝑣𝑖  
∈ ℝ𝑛+1 ∀𝑖 ∈ 𝑉 ∪ {0}



Coloring by Finding Independent Sets

•Most coloring algorithms proceed by iteratively coloring a ‘large’ 
independent set.

• For hypergraphs, there are possibly many ways to define independent 
set. 

• The standard notion of independent set for hypergraphs is not useful 
here.



Odd and Even Independent Sets

• For LO coloring the following notion of independent sets is useful.

•Odd independent set: 𝑆 ⊆ 𝑉 is an odd independent set if 𝑆 ∩ 𝑒 ≤ 1 
for each edge 𝑒.

• Even independent set: 𝑆 ⊆ 𝑉 is an even independent set if 𝑆 ∩ 𝑒 ∈
{0, 2} for each edge 𝑒.



Combinatorial Rounding

• The ideal solution of the SDP would be 1-dimensional.

• The values 𝛾𝑎 = 𝑣𝑎, 𝑣0  contain a lot of information about the color 
that can be assigned to 𝑎 if |𝛾𝑎| ≈ 1.



Key Observations

•Observation 1. If {𝑎, 𝑏, 𝑐} is an edge, then 𝛾𝑎 + 𝛾𝑏 + 𝛾𝑐 = −1.

•Observation 2. For each vertex 𝑎, we have |𝛾𝑎| ≤ 1.
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Key Observations

•Observation 1. If {𝑎, 𝑏, 𝑐} is an edge, then 𝛾𝑎 + 𝛾𝑏 + 𝛾𝑐 = −1.

•  Proof. Take inner-product of 𝑣0 and the both sides of the equation 

 𝑣𝑖 + 𝑣𝑗 + 𝑣𝑘 = −𝑣0. 

•Observation 2. For each vertex 𝑎, we have |𝛾𝑎| ≤ 1.

• Proof. Cauchy-Schwarz!!
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First Iteration

• The set 𝑉 ∖ 𝑆1 is an odd independent set.



First Iteration

• The set 𝑉 ∖ 𝑆1 is an odd independent set.

•Use the largest color to color it.



Second Iteration



Second Iteration



Second Iteration

• The set 𝑆1 ∖ 𝑆2 is an odd independent set in the hypergraph induced by 𝑆1.



Second Iteration

• The set 𝑆1 ∖ 𝑆2 is an odd independent set in the hypergraph induced by 𝑆1.

•Use the second largest color to color it.



And so on…



The performance guarantee

•We have 𝐼𝑗 ≈ [−
1

3
− 𝜀𝑗 , −

1

3
+ 𝜀𝑗] and corresponding set 𝑆𝑗 =

𝑎 ∈ 𝑉  𝛾𝑎 ∈ 𝐼𝑗} with 𝜀𝑗 =
1

2𝑗.



The performance guarantee

•We have 𝐼𝑗 ≈ [−
1

3
− 𝜀𝑗 , −

1

3
+ 𝜀𝑗] and corresponding set 𝑆𝑗 =

𝑎 ∈ 𝑉  𝛾𝑎 ∈ 𝐼𝑗} with 𝜀𝑗 =
1

2𝑗.

• After O(log 1/𝜀) all the vertices remaining have 𝛾 ≈ −
1

3
.



Handling the balanced case

•We used standard Hyperplane rounding for the balanced case to obtain 
our result.
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Handling the balanced case

•We used standard Hyperplane rounding for the balanced case to obtain 
our result.

• A (slight) random perturbation to the remaining vectors + 
combinatorial rounding = O(log 𝑛) coloring.



Some interesting directions

• Can the known methods be generalized to k-LO colorable 3-uniform 
hypergraphs?



Some interesting directions

• Can the known methods be generalized to k-LO colorable 3-uniform 
hypergraphs?

• Can the known methods be generalized to 2-LO colorable r-uniform 
hypergraphs?



Questions?



Thanks
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