Linearly Ordered (LO) Coloring of 2–LO Colorable 3–Uniform Hypergraphs

Anand Louis* Alantha Newman** Arka Ray* *Indian Institute of Science **Université Grenoble Alpes

Coloring Problems

• Given a graph/hypergraph assign each vertex a color so that no edge is monochromatic.

 Given a graph/hypergraph assign each vertex a color so that no edge is monochromatic.

 Given a graph/hypergraph assign each vertex a color so that no edge is monochromatic.

• General graphs **—** hardness of approximation

 Given a graph/hypergraph assign each vertex a color so that no edge is monochromatic.

General graphs hardness of approximation

• No polynomial-time algorithm for coloring a graph using $n^{1-\varepsilon}$ colors unless NP=P (Fiege, Killian, J.Comp'98; Zuckerman, ToC'07).

Approximate Coloring Problems

• Given a 3-colorable graph find a coloring with minimum number of colors.

Approximate Coloring Problems

• Given a 3-colorable graph find a coloring with minimum number of colors.

• Given a 2-colorable 3-uniform hypergraph find a coloring with minimum number of colors.

• Given a hypergraph assign each vertex a color from a linearly ordered set of colors so that each edge has a unique maximum.

• Given a hypergraph assign each vertex a color from {1,2,3, ... } so that each edge has a unique maximum.

• Given a hypergraph assign each vertex a color from {1,2,3, ... } so that each edge has a unique maximum.

• Given a hypergraph assign each vertex a color from {1,2,3, ... } so that each edge has a unique maximum.

• Given a hypergraph assign each vertex a color from {1,2,3, ... } so that each edge has a unique maximum.

• Given a 2-LO colorable 3-uniform hypergraph find a coloring using fewest possible colors.

Why look at LO Coloring of a Hypergraph?

Approximate coloring problems

Promise Constraint Satisfaction Problems (PCSPs).

- Barto, Battistelli, and Berg [STACS'21]: an almost complete characterization of the tractability for PCSPs 3uniform hypergraph with 2 colors under various notions of coloring.
- LO coloring was the only gap in their characterization.

Results for 2-LO colorable 3-uniform hypergraphs

• Previous Result (Nakajima, Živný-TCT'22): LO coloring using at most $\tilde{O}(n^{1/3})$ colors.

Results for 2-LO colorable 3-uniform hypergraphs

• Previous Result (Nakajima, Živný-TCT'22): LO coloring using at most $\tilde{O}(n^{1/3})$ colors.

• Our result: LO coloring using at most $\tilde{O}(n^{1/5})$.

Results for 2-LO colorable 3-uniform hypergraphs

• Previous Result (Nakajima, Živný-TCT'22): LO coloring using at most $\tilde{O}(n^{1/3})$ colors.

• Our result: LO coloring using at most $\tilde{O}(n^{1/5})$.

Concurrent Work (Håstad, Martinsson, Nakajima, Živný-APPROX'24):
LO coloring using at most 2 log₂ n colors.

- Semidefinite Programing (SDP) problems are optimization problems:
 - Objective: linear
 - Constraints: (a) linear constraints (b)psd-ness constraint.

Example:

$$\max \sum_{i,j} c_{ij} x_{ij}$$
$$\sum_{i,j} a_{ijk} x_{ij} = b_k \qquad \forall k$$
$$X = (x_{ij}) \ge 0$$

- Vector Programing (VP) problems are optimization problems involving n-dimensional vectors.
 - Objective: linear in inner-products
 - Constraints: linear in the inner-product.

Example:

$$\max \sum_{i,j} c_{ij} \langle v_i, v_j \rangle$$
$$\sum_{i,j} a_{ijk} \langle v_i, v_j \rangle = b_k \qquad \forall k$$
$$v \in \mathbb{R}^n$$

• Fact: VPs and SDPs are equivalent.

• It is easier to deal with VPs.

• VPs are referred to as SDPs as well.

"Proof" of the result

Integer Program for 2–LO colorable hypergraphs

Mapping the colors $1 \mapsto -1$ and $2 \mapsto 1$ we get:

$$x_i + x_j + x_k = -1 \qquad \forall \{i, j, k\} \in E$$

$$x_i \in \{-1, +1\} \qquad \forall i \in V$$

SDP relaxation for 2–L0 colorable hypergraphs

$$\begin{aligned} v_i + v_j + v_k &= -v_0 & \forall \{i, j, k\} \in E \\ \|v_i\|^2 &= 1 & \forall i \in V \cup \{0\} \\ v_i &\in \mathbb{R}^{n+1} & \forall i \in V \cup \{0\} \end{aligned}$$

SDP relaxation for 2–L0 colorable hypergraphs

$$\begin{aligned} v_i + v_j + v_k &= -v_0 & \forall \{i, j, k\} \in E \\ \|v_i\|^2 &= 1 & \forall i \in V \cup \{0\} \\ v_i &\in \mathbb{R}^{n+1} & \forall i \in V \cup \{0\} \end{aligned}$$

SDP relaxation for 2–L0 colorable hypergraphs

Coloring by Finding Independent Sets

- Most coloring algorithms proceed by iteratively coloring a 'large' independent set.
- For hypergraphs, there are possibly many ways to define independent set.
- The standard notion of independent set for hypergraphs is not useful here.

Odd and Even Independent Sets

• For LO coloring the following notion of independent sets is useful.

• Odd independent set: $S \subseteq V$ is an odd independent set if $|S \cap e| \le 1$ for each edge e.

• Even independent set: $S \subseteq V$ is an even independent set if $|S \cap e| \in \{0, 2\}$ for each edge e.

Combinatorial Rounding

• The ideal solution of the SDP would be 1-dimensional.

• The values $\gamma_a = \langle v_a, v_0 \rangle$ contain a lot of information about the color that can be assigned to a if $|\gamma_a| \approx 1$.

• Observation 1. If $\{a, b, c\}$ is an edge, then $\gamma_a + \gamma_b + \gamma_c = -1$.

• Observation 2. For each vertex a, we have $|\gamma_a| \leq 1$.

- Observation 1. If $\{a, b, c\}$ is an edge, then $\gamma_a + \gamma_b + \gamma_c = -1$.
- Proof. Take inner-product of v_0 and the both sides of the equation

$$v_i + v_j + v_k = -v_0.$$

• Observation 2. For each vertex a, we have $|\gamma_a| \leq 1$.

- Observation 1. If $\{a, b, c\}$ is an edge, then $\gamma_a + \gamma_b + \gamma_c = -1$.
- Proof. Take inner-product of v_0 and the both sides of the equation

$$v_i + v_j + v_k = -v_0.$$

- Observation 2. For each vertex a, we have $|\gamma_a| \leq 1$.
- Proof. Cauchy-Schwarz!!

• The set $V \setminus S_1$ is an odd independent set.

• The set $V \setminus S_1$ is an odd independent set.

• Use the largest color to color it.

Second Iteration

• The set $S_1 \setminus S_2$ is an odd independent set in the hypergraph induced by S_1 .

• The set $S_1 \setminus S_2$ is an odd independent set in the hypergraph induced by S_1 .

• Use the second largest color to color it.

And so on...

The performance guarantee

• We have
$$I_j \approx \left[-\frac{1}{3} - \varepsilon_j, -\frac{1}{3} + \varepsilon_j\right]$$
 and corresponding set $S_j = \left\{a \in V \mid \gamma_a \in I_j\right\}$ with $\varepsilon_j = \frac{1}{2^j}$.

The performance guarantee

• We have $I_j \approx \left[-\frac{1}{3} - \varepsilon_j, -\frac{1}{3} + \varepsilon_j\right]$ and corresponding set $S_j = \left\{a \in V \mid \gamma_a \in I_j\right\}$ with $\varepsilon_j = \frac{1}{2^j}$.

• After O(log 1/ ε) all the vertices remaining have $\gamma \approx -\frac{1}{3}$.

Handling the balanced case

• We used standard Hyperplane rounding for the balanced case to obtain our result.

Handling the balanced case

• We used standard Hyperplane rounding for the balanced case to obtain our result.

Handling the balanced case

• We used standard Hyperplane rounding for the balanced case to obtain our result.

 A (slight) random perturbation to the remaining vectors + combinatorial rounding = O(log n) coloring.

Some interesting directions

• Can the known methods be generalized to k-LO colorable 3-uniform hypergraphs?

Some interesting directions

• Can the known methods be generalized to k-LO colorable 3-uniform hypergraphs?

• Can the known methods be generalized to 2-LO colorable r-uniform hypergraphs?

Questions?

Thanks