Linearly Ordered (LO) Coloring \int 2-LO Colorable 3-Uniform Hypergraphs

Anand Louis^{*} Alantha Newman^{**} Arka Ray^{*} *Indian Institute of Science **Université Grenoble Alpes

Coloring Problems

• General graphs \longrightarrow hardness of approximation

• General graphs \longrightarrow hardness of approximation

 \bullet No polynomial-time algorithm for coloring a graph using $n^{1-\varepsilon}$ colors unless NP=P (Fiege, Killian, J.Comp'98; Zuckerman, ToC'07).

Approximate Coloring Problems

• Given a 3-colorable graph find a coloring with minimum number of colors.

Approximate Coloring Problems

• Given a 3-colorable graph find a coloring with minimum number of colors.

• Given a 2-colorable 3-uniform hypergraph find a coloring with minimum number of colors.

• Given a hypergraph assign each vertex a color from a linearly ordered set of colors so that each edge has a unique maximum.

• Given a hypergraph assign each vertex a color from {1,2,3, ... } so that each edge has a unique maximum.

• Given a hypergraph assign each vertex a color from {1,2,3, ... } so that each edge has a unique maximum.

• Given a hypergraph assign each vertex a color from {1,2,3, ... } so that each edge has a unique maximum.

• Given a hypergraph assign each vertex a color from $\{1,2,3,...\}$ so that each edge has a unique maximum.

• Given a 2-LO colorable 3-uniform hypergraph find a coloring using fewest possible colors.

Why look at LO Coloring of a Hypergraph?

• Approximate coloring problems \blacksquare

Promise Constraint Satisfaction Problems (PCSPs).

- Barto, Battistelli, and Berg [STACS'21]: an almost complete characterization of the tractability for PCSPs 3 uniform hypergraph with 2 colors under various notions of coloring.
- LO coloring was the only gap in their characterization.

Results for 2-LO colorable 3-uniform hypergraphs

• Previous Result (Nakajima, Živný-TCT'22): LO coloring using at most $\tilde{O}(n^{1/3})$ colors.

Results for 2-LO colorable 3-uniform hypergraphs

• Previous Result (Nakajima, Živný-TCT'22): LO coloring using at most $\tilde{O}(n^{1/3})$ colors.

 \bullet Our result: LO coloring using at most $\tilde{O}(n^{1/5})$.

Results for 2-LO colorable 3-uniform hypergraphs

• Previous Result (Nakajima, Živný-TCT'22): LO coloring using at most $\tilde{O}(n^{1/3})$ colors.

 \bullet Our result: LO coloring using at most $\tilde{O}(n^{1/5})$.

• Concurrent Work (Håstad, Martinsson, Nakajima, Živný-APPROX'24): LO coloring using at most $2 \log_2 n$ colors.

- •Semidefinite Programing(SDP) problems are optimization problems:
	- Objective: linear
	- Constraints: (a) linear constraints (b)psd-ness constraint.

Example:

$$
\max \sum_{i,j} c_{ij} x_{ij}
$$

$$
\sum_{i,j} a_{ijk} x_{ij} = b_k \qquad \forall k
$$

$$
X = (x_{ij}) \ge 0
$$

- Vector Programing (VP) problems are optimization problems involving n-dimensional vectors.
	- Objective: linear in inner-products
	- Constraints: linear in the inner-product.

Example:

$$
\max \sum_{i,j} c_{ij} \langle v_i, v_j \rangle
$$

$$
\sum_{i,j} a_{ijk} \langle v_i, v_j \rangle = b_k \qquad \forall k
$$

$$
v \in \mathbb{R}^n
$$

•Fact: VPs and SDPs are equivalent.

• It is easier to deal with VPs.

• VPs are referred to as SDPs as well.

"Proof" of the result

Integer Program for 2-LO colorable hypergraphs

Mapping the colors $1 \mapsto -1$ and $2 \mapsto 1$ we get:

$$
x_i + x_j + x_k = -1 \qquad \forall \{i, j, k\} \in E
$$

$$
x_i \in \{-1, +1\} \qquad \qquad \forall i \in V
$$

SDP relaxation for 2-LO colorable hypergraphs

$$
v_{i} + v_{j} + v_{k} = -v_{0} \qquad \forall \{i, j, k\} \in E
$$

$$
||v_{i}||^{2} = 1 \qquad \forall i \in V \cup \{0\}
$$

$$
v_{i} \in \mathbb{R}^{n+1} \qquad \forall i \in V \cup \{0\}
$$

SDP relaxation for 2-LO colorable hypergraphs

$$
v_i + v_j + v_k = -v_0 \qquad \forall \{i, j, k\} \in E
$$

$$
||v_i||^2 = 1 \qquad \forall i \in V \cup \{0\}
$$

$$
v_i \in \mathbb{R}^{n+1} \qquad \forall i \in V \cup \{0\}
$$

SDP relaxation for 2-LO colorable hypergraphs

Coloring by Finding Independent Sets

- Most coloring algorithms proceed by iteratively coloring a 'large' independent set.
- For hypergraphs, there are possibly many ways to define independent set.
- The standard notion of independent set for hypergraphs is not useful here.

Odd and Even Independent Sets

• For LO coloring the following notion of independent sets is useful.

• Odd independent set: $S \subseteq V$ is an odd independent set if $|S \cap e| \leq 1$ for each edge e.

• Even independent set: $S \subseteq V$ is an even independent set if $|S \cap e| \in$ $\{0, 2\}$ for each edge e .

Combinatorial Rounding

• The ideal solution of the SDP would be 1-dimensional.

• The values $\gamma_a = \langle v_a, v_0 \rangle$ contain a lot of information about the color that can be assigned to a if $|\gamma_a| \approx 1$.

• Observation 1. If {a, b, c} is an edge, then $\gamma_a + \gamma_b + \gamma_c = -1$.

• Observation 2. For each vertex a , we have $|\gamma_a| \leq 1$.

- Observation 1. If {a, b, c} is an edge, then $\gamma_a + \gamma_b + \gamma_c = -1$.
- Proof. Take inner-product of v_0 and the both sides of the equation

$$
v_i + v_j + v_k = -v_0.
$$

• Observation 2. For each vertex a , we have $|\gamma_a| \leq 1$.

- Observation 1. If {a, b, c} is an edge, then $\gamma_a + \gamma_b + \gamma_c = -1$.
- Proof. Take inner-product of v_0 and the both sides of the equation

$$
v_i + v_j + v_k = -v_0.
$$

- Observation 2. For each vertex a , we have $|\gamma_a| \leq 1$.
- Proof. Cauchy-Schwarz!!

• The set $V \setminus S_1$ is an odd independent set.

• The set $V \setminus S_1$ is an odd independent set.

• Use the largest color to color it.

Second Iteration

• The set $S_1 \setminus S_2$ is an odd independent set in the hypergraph induced by S_1 .

• The set $S_1 \setminus S_2$ is an odd independent set in the hypergraph induced by S_1 .

• Use the second largest color to color it.

And so on…

The performance guarantee

• We have
$$
I_j \approx [-\frac{1}{3} - \varepsilon_j, -\frac{1}{3} + \varepsilon_j]
$$
 and corresponding set $S_j =$
{ $a \in V | \gamma_a \in I_j$ } with $\varepsilon_j = \frac{1}{2^j}$.

The performance quarantee

- We have $I_j \approx \left[-\frac{1}{3}\right]$ 3 $-\varepsilon_j$, – 1 3 $+ \varepsilon_j$] and corresponding set $S_j =$ $a \in V | \gamma_a \in I_j$ with $\varepsilon_j =$ 1 2^{j} .
- After O(log 1/ ε) all the vertices remaining have $\gamma \approx -\frac{1}{3}$ 3 .

Handling the balanced case

• We used standard Hyperplane rounding for the balanced case to obtain our result.

Handling the balanced case

• We used standard Hyperplane rounding for the balanced case to obtain our result.

Handling the balanced case

• We used standard Hyperplane rounding for the balanced case to obtain our result.

• A (slight) random perturbation to the remaining vectors + combinatorial rounding = $O(log n)$ coloring.

Some interesting directions

• Can the known methods be generalized to k-LO colorable 3-uniform hypergraphs?

Some interesting directions

• Can the known methods be generalized to k-LO colorable 3-uniform hypergraphs?

• Can the known methods be generalized to 2-LO colorable r-uniform hypergraphs?

Questions?

Thanks