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[he Aim

* Relate hypevgraph expansion and the spectra of various random walks
on a simplicial comp lex.

* Relate hypevgmph expansion and link expansion of a simplicial

comp lex.
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Hypergraph Expansion
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Lheeger's Inequality {for graphs

A, = The second largest eigenvalue of the random walk matrix of a
graph.
1— 1,

> < ¢¢ <V2(1=13)

Arora, Barak, Steurer (FOCS10) showed that if number of large eigenvalues

S [arge (lavge threshold rank) then a small sparse set can be found.
What about hypergraphs?
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The opectra of a Hypergraph

* One diﬁCieul’cy n obtaining Cheeger-like inequaﬁﬂes (and Ioeyond) for
hypergraph is the notion of the spectra of hypergvaph IS not we“-deﬁned.

®* One appvoach that has been exp loved is to deﬁne Lap lacian operator fov

hypevgvaphs and consider its eigenvalue [Chan, Louis, Tang, Zhang —
]ACM’18].

* 1t is however not known how to compute such eigenvalue above operator as it is
non-linear (in geneml).

* Instead, here we try to use eigenvalues of random walks on simplicial
comp lexes to do so.
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dimplicial Complex

* An (abstract) simplicial comp lex is stmp [y a downward closed

hypergraph with the edge set typicaﬂy denoted Iay X.
* Each hyperedge n a simpﬁcial comp lex is called a face.

> Cardinali’cy of a face is called the dimension of the face.
The dimension of the [argest faces is the dimension of the comp lex.

* We use X (1) for the collection of the [-dimensional faces.
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Weighted vimplicial Lomplexes

* We consider simp[icial comp lexes where all maximal faces (’cop faces)
are of same dimension k (called pure comp lexes).

* Use IT; to denote (normalized) weights on the faces of dimension [.
* The weight of the top faces can be arb itrary, Le., [}, is arb itrary.
* The weigh‘c of smaller faces S essenﬁally the weighted “degree”, Le.,

I, (S) — 2eDs Hk(e).

(1)



Unitorm Hypergraph to (Pure) Simplicial Complex

* Consider a k~vmg€orm hypevgraph H = (V,E) with weight w.



Unitorm Hypergraph to (Pure) Simplicial Complex
* Consider a k~ung€ovm hypevgraph H = (V,E) with weight w.

* Take X to be the subsets of setsin E.



Unitorm Hypergraph to (Pure) Simplicial Complex
* Consider a k~un'gform hypevgraph H = (V,E) with weight w.

* Take X to be the subsets of setsin E.

et ]l k be W with appropriate normalization, ie., take
[T (e) = > wee)

o! w(e')



Unitorm Hypergraph to (Pure) Simplicial Complex
* Consider a k~vmg€ovm hypevgraph H = (V,E) with weight w.

* Take X to be the subsets of setsin E.

°Let ]l Kk be W with appropriate normalization, ie., take

Hk(e) — 5 ‘:Vv(ve()e,).

Note that this determines the other weights as well.
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simplicial Complexes in L

* Agreement testing:

* Dinur and Kaufman (FOCS11)
* Dikstein and Dinur (FOCSh9)
* Sampling:
* Anari, Liu, Gharan, Vinzant (STOCh9)
* Abdolazimi, Liu, and Gharan (FOCS’20)

. Coding Theory:
* Jeronimo, Srivastava, and Tulsiani (STOC’21)

* Solving CSPs:
o A[ev,Jeronimo, and Tulsiani (FOCSh9)
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Up-Down Walks

* Takel < m.

* In an Up Walk one goes from a face 0 € X(1) to T € X (m) with probability
[T (7)
(o)

* In a Down Walk one goes from a face 6 € X(m) to t € X (1) with probability
I1; ()
M (o)

* An Up-Down Walk on [ passing through m is constructed by combining the up

and dOWYl walks a’oove.



owap Walks

* In a swap walk from [ to m we move from a face 0 € X (1) to T € X(m) with

probability HH&” ((Z)UT)
l
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xamples

* Max-Cut: A gvaph s given and the aim is to assign labels 0 and 1 so as maximize

num’oev ofedges ’naving diﬁceren’c [&’06[8.

* 3-SAT: A set of clauses (in CNF) are given and the aim is to assign the variables
labels TRUE and FALSE so that number of clauses satisfted is maximized.

* Given linear equations modulo p with 3 variables each maximize the number of
equations saﬁsﬁed.
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Ihe Problem Statement
* nvariables to be assigned labels ﬁrom a label set X.
* Constraints on the variables in the form of relations on X.

* The aim is to maximize the number of constraints saﬁsﬁed.

e ]fau constraints are k-ary, we call the cowesponding instances k-CSP instances.
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Known Results on solving CoPs

* Barak, Raghavendra, Steurer (FOCS') gave an algorithm to solve 2-CSPs on

instances with small number of lavge eigenvalues (small threshold rank).

* Since we can alveady decompose any gvaph into such (small threshold rank)
parts with very few edges between each part we can “solve” 2-CSPs.

* Alev, Jeronimo, Tulsiani (FOCS19) gave a similar algorithm to solve lk-CSPs on
instances splittalo le hypergraphs.

* The notion of splitta’oili’cy is a natural analogue of threshold rank for hypergvaph

based on threshold ranks of swap walk on the cowesponding simplicial comp lex.



Lan we use random walks on simplicial complexes to
compute sparse cuts in hypergraph
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We show there are expanding hypergraphs with large threshold rank swap

walks

There are k-vmiform hypergvaph H with at least n vertices such that

1 . L
* Py = pEL other words, the expansion s large, and

* swap walks between dimensions bigger than 2 have threshold rank {1y, (n).

* Also, swap walks between dimensions 1 and k — 1 also have threshold rank
Qg (n).

This means we cannot compute a decomposiﬂon of non-splitta’o le Hwith each
component Ioeing spli‘c’ca’o le.



We show there are expanding hypergraphs with large threshold rank up-down

walks

]n’ceresﬁngly, the up—down walk between dimensions larger than 2 on the

Same hypergv aph also have [arge t’/lTGSl’lO[d Vank.
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[ink Expansion

* The most pOpu[aV notion of expansion for simp[icial comp lexes used in

CS.
°*In fact, all the paper mentioned befove used it in some capacity.

* So, it is again natural to ask whether the notions of hypergvaph
expansion and link expansion (of the cowesponding simp[icial
comp lex) related.



Ihere is an expanding hypergraph with small link expansion

There are k-uniform aypevgraph H with at least n vertices such that

1
. > . L
Oy = GIOk’ in other words, the expansilon s lavge




Again, we show there are expanding hypergraph with small link expansior

There are k-uniform aypevgraph H with at least n vertices such that

1
o > . : .
¢H = (3k)k , N other WOVdS, the cxXpansion s lavge, and

* [ink expansion is © (i)

n2



Uuestions!



[hanks
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