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• Relate hypergraph expansion and link expansion of a simplicial 
complex.
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𝜆2 = The second largest eigenvalue of the random walk matrix of a 
graph.
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2
≤ 𝜙𝐺 ≤ 2(1 − 𝜆2)

Arora, Barak, Steurer (FOCS’10) showed that if number of large eigenvalues 

is large (large threshold rank) then a small sparse set can be found.
What about hypergraphs?
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The Spectra of a Hypergraph

• One difficulty in obtaining Cheeger-like inequalities (and beyond) for 
hypergraph is the notion of the spectra of hypergraph is not well-defined.

• One approach that has been explored is to define Laplacian operator for 
hypergraphs and consider its eigenvalue [Chan, Louis, Tang, Zhang – 
JACM’18].

• It is however not known how to compute such eigenvalue above operator as it is 
non-linear (in general).

• Instead, here we try to use eigenvalues of random walks on simplicial 
complexes to do so.
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Simplicial Complex

• An (abstract) simplicial complex is simply a downward closed 
hypergraph with the edge set typically denoted by 𝑋.

• Each hyperedge in a simplicial complex is called a face.

• Cardinality of a face is called the dimension of the face.
The dimension of the largest faces is the dimension of the complex.

•We use 𝑋(𝑙) for the collection of the 𝑙-dimensional faces.
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Weighted Simplicial Complexes

•We consider simplicial complexes where all maximal faces (top faces) 
are of same dimension 𝑘 (called pure complexes). 
•Use Π𝑙  to denote (normalized) weights on the faces of dimension 𝑙.
• The weight of the top faces can be arbitrary, i.e., Π𝑘  is arbitrary.
• The weight of smaller faces is essentially the weighted “degree”, i.e.,

Π𝑙 𝑠 =
σ𝑒⊇𝑠 Π𝑘(𝑒)

𝑘
𝑙

.



Uniform Hypergraph to (Pure) Simplicial Complex

• Consider a 𝑘-uniform hypergraph 𝐻 = (𝑉, 𝐸) with weight 𝑤.



Uniform Hypergraph to (Pure) Simplicial Complex

• Consider a 𝑘-uniform hypergraph 𝐻 = (𝑉, 𝐸) with weight 𝑤.

• Take 𝑋 to be the subsets of sets in 𝐸.



Uniform Hypergraph to (Pure) Simplicial Complex

• Consider a 𝑘-uniform hypergraph 𝐻 = (𝑉, 𝐸) with weight 𝑤.

• Take 𝑋 to be the subsets of sets in 𝐸.

• Let Π𝑘  be 𝑤 with appropriate normalization,  i.e., take 

Π𝑘 𝑒 =
𝑤(𝑒)

σ
𝑒′ 𝑤(𝑒′)

.



Uniform Hypergraph to (Pure) Simplicial Complex

• Consider a 𝑘-uniform hypergraph 𝐻 = (𝑉, 𝐸) with weight 𝑤.

• Take 𝑋 to be the subsets of sets in 𝐸.

• Let Π𝑘  be 𝑤 with appropriate normalization,  i.e., take 

Π𝑘 𝑒 =
𝑤(𝑒)

σ
𝑒′ 𝑤(𝑒′)

.

Note that this determines the other weights as well.
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• Agreement testing:
• Dinur and Kaufman (FOCS’11)
• Dikstein and Dinur (FOCS’19)

• Sampling:
• Anari, Liu, Gharan, Vinzant (STOC’19)
• Abdolazimi, Liu, and Gharan (FOCS’20)

• Coding Theory:
•  Jeronimo, Srivastava, and Tulsiani (STOC’21)

• Solving CSPs:
• Alev, Jeronimo, and Tulsiani (FOCS’19)
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Up-Down Walks

• Take 𝑙 < 𝑚.

• In an Up Walk one goes from a face 𝜎 ∈ 𝑋 𝑙  to 𝜏 ∈ 𝑋(𝑚) with probability 
Π𝑚(𝜏)

Π𝑙(𝜎)
.

• In a Down Walk one goes from a face 𝜎 ∈ 𝑋 𝑚  to 𝜏 ∈ 𝑋(𝑙) with probability 
Π𝑙(𝜏)

Π𝑚(𝜎)
.

• An Up-Down Walk on 𝑙 passing through 𝑚 is constructed by combining the up 
and down walks above.



Swap Walks

• In a swap walk from 𝑙 to 𝑚 we move from a face 𝜎 ∈ 𝑋(𝑙) to 𝜏 ∈ 𝑋(𝑚) with 
probability 

Π𝑙+𝑚(𝜎⊔𝜏)

Π𝑙(𝜎)
.
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Examples

• Max-Cut: A graph is given and the aim is to assign labels 0 and 1 so as maximize 
number of edges having different labels.

• 3-SAT: A set of clauses (in CNF) are given and the aim is to assign the variables 
labels TRUE and FALSE so that number of clauses satisfied is maximized.

• Given linear equations modulo 𝑝 with 3 variables each maximize the number of 
equations satisfied.
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The Problem Statement

• n variables to be assigned labels from a label set Σ.

• Constraints on the variables in the form of relations on Σ.

• The aim is to maximize the number of constraints satisfied.

• If all constraints are k-ary, we call the corresponding instances k-CSP instances. 
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Known Results on solving CSPs

• Barak, Raghavendra, Steurer (FOCS’11) gave an algorithm to solve 2-CSPs on 
instances with small number of large eigenvalues (small threshold rank).

• Since we can already decompose any graph into such (small threshold rank) 
parts with very few edges between each part we can “solve” 2-CSPs.

• Alev, Jeronimo, Tulsiani (FOCS’19) gave a similar algorithm to solve k-CSPs on 
instances splittable hypergraphs.

• The notion of splittability is a natural analogue of threshold rank for hypergraph 
based on threshold ranks of swap walk on the corresponding simplicial complex.
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We show there are expanding hypergraphs with large threshold rank swap 
walks.
There are k-uniform hypergraph H with at least n vertices such that

• 𝜙𝐻 ≥
1

𝑘
 , in other words, the expansion is large, and 

• swap walks between dimensions bigger than 2 have threshold rank Ω𝑘(𝑛).

• Also, swap walks between dimensions 1 and 𝑘 − 1 also have threshold rank 
Ω𝑘(𝑛).

This means we cannot compute a decomposition of non-splittable H with each 
component being splittable.



We show there are expanding hypergraphs with large threshold rank up-down 
walks.
Interestingly, the up-down walk between dimensions larger than 2 on the 
same hypergraph also have large threshold rank.
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Link Expansion

• The most popular notion of expansion for simplicial complexes used in 
CS.

• In fact, all the paper mentioned before used it in some capacity.

• So, it is again natural to ask whether the notions of hypergraph 
expansion and link expansion (of the corresponding simplicial 
complex) related.



There is an expanding hypergraph with small link expansion

There are k-uniform hypergraph H with at least n vertices such that
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Again, we show there are expanding hypergraph with small link expansion

There are k-uniform hypergraph H with at least n vertices such that

• 𝜙𝐻 ≥
1

(3𝑘)𝑘 , in other words, the expansion is large, and 

• link expansion is Θ 1

𝑛2 .



Questions?



Thanks
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