Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

> Anand Louis Rameesh Paul Arka Ray Indian Institute of Science, Bengaluru

• Relate hypergraph expansion and the spectra of various random walks on a simplicial complex.

The Aim

- Relate hypergraph expansion and the spectra of various random walks on a simplicial complex.
- Relate hypergraph expansion and link expansion of a simplicial complex.

 $\phi_G(S) =$ $W(\partial(S))$ $vol(S)$

 $\phi_G(S) =$ $W(\partial(S))$ $vol(S)$

 $\phi_G(S) =$ $W(\partial(S))$ $vol(S)$

λ_2 = The second largest eigenvalue of the random walk matrix of a graph.

 λ_2 = The second largest eigenvalue of the random walk matrix of a graph. $1 - \lambda_2$ 2 $\leq \phi_G \leq \sqrt{2(1-\lambda_2)}$

 λ_2 = The second largest eigenvalue of the random walk matrix of a graph. $1 - \lambda_2$ 2 $\leq \phi_G \leq \sqrt{2(1-\lambda_2)}$

Arora, Barak, Steurer (FOCS'10) showed that if number of large eigenvalues is large (large threshold rank) then a small sparse set can be found.

 λ_2 = The second largest eigenvalue of the random walk matrix of a graph. $1 - \lambda_2$ 2 $\leq \phi_G \leq \sqrt{2(1-\lambda_2)}$

Arora, Barak, Steurer (FOCS'10) showed that if number of large eigenvalues is large (large threshold rank) then a small sparse set can be found. What about hypergraphs?

• One difficulty in obtaining Cheeger-like inequalities (and beyond) for hypergraph is the notion of the spectra of hypergraph is not welldefined.

- One difficulty in obtaining Cheeger-like inequalities (and beyond) for hypergraph is the notion of the spectra of hypergraph is not welldefined.
- One approach that has been explored is to define Laplacian operator for hypergraphs and consider its eigenvalue [Chan, Louis, Tang, Zhang – JACM'18].

- One difficulty in obtaining Cheeger-like inequalities (and beyond) for hypergraph is the notion of the spectra of hypergraph is not welldefined.
- One approach that has been explored is to define Laplacian operator for hypergraphs and consider its eigenvalue [Chan, Louis, Tang, Zhang – JACM'18].
- •It is, however, not known how to exactly compute the eigenvalues for the above operator as it is non-linear (in general).

- One difficulty in obtaining Cheeger-like inequalities (and beyond) for hypergraph is the notion of the spectra of hypergraph is not well-defined.
- One approach that has been explored is to define Laplacian operator for hypergraphs and consider its eigenvalue [Chan, Louis, Tang, Zhang – JACM'18].
- It is however not known how to compute such eigenvalue above operator as it is non-linear (in general).
- Instead, here we try to use eigenvalues of random walks on simplicial complexes to do so.

• An (abstract) simplicial complex is simply a downward closed hypergraph with the edge set typically denoted by X .

- · An (abstract) simplicial complex is simply a downward closed hypergraph with the edge set typically denoted by X .
- Each hyperedge in a simplicial complex is called a face.

- An (abstract) simplicial complex is simply a downward closed hypergraph with the edge set typically denoted by X .
- Each hyperedge in a simplicial complex is called a face.
- Cardinality of a face is called the dimension of the face. The dimension of the largest faces is the dimension of the complex.

- An (abstract) simplicial complex is simply a downward closed hypergraph with the edge set typically denoted by X .
- Each hyperedge in a simplicial complex is called a face.
- Cardinality of a face is called the dimension of the face. The dimension of the largest faces is the dimension of the complex.
- We use $X(l)$ for the collection of the *l*-dimensional faces.

• We consider simplicial complexes where all maximal faces (top faces) are of same dimension k (called pure complexes).

- We consider simplicial complexes where all maximal faces (top faces) are of same dimension k (called pure complexes).
- \bullet Use Π_l to denote (normalized) weights on the faces of dimension l .

- We consider simplicial complexes where all maximal faces (top faces) are of same dimension k (called pure complexes).
- \bullet Use Π_l to denote (normalized) weights on the faces of dimension l .
- The weight of the top faces can be arbitrary, i.e., Π_k is arbitrary.

- We consider simplicial complexes where all maximal faces (top faces) are of same dimension k (called pure complexes).
- \bullet Use Π_l to denote (normalized) weights on the faces of dimension l .
- The weight of the top faces can be arbitrary, i.e., Π_k is arbitrary.
- The weight of smaller faces is essentially the weighted "degree", i.e.,

$$
\Pi_l(s) = \frac{\sum_{e \supseteq s} \Pi_k(e)}{\binom{k}{l}}.
$$

• Consider a k-uniform hypergraph $H = (V, E)$ with weight w.

- Consider a k-uniform hypergraph $H = (V, E)$ with weight w.
- Take X to be the subsets of sets in E .

- Consider a k-uniform hypergraph $H = (V, E)$ with weight w.
- Take X to be the subsets of sets in E .

• Let $\Pi_{\mathcal{K}}$ be W with appropriate normalization, i.e., take $\Pi_k(e) =$ $W(e)$ $\sum_{e'} w(e')$.

- Consider a k-uniform hypergraph $H = (V, E)$ with weight w.
- Take X to be the subsets of sets in E .
- Let $\Pi_{\mathcal{K}}$ be W with appropriate normalization, i.e., take $\Pi_k(e) =$ $W(e)$ $\sum_{e'} w(e')$. Note that this determines the other weights as well.

- Agreement testing:
	- Dinur and Kaufman (FOCS'11)
	- Dikstein and Dinur (FOCS'19)

- Agreement testing:
	- Dinur and Kaufman (FOCS'11)
	- Dikstein and Dinur (FOCS'19)
- •Sampling:
	- Anari, Liu, Gharan, Vinzant (STOC'19)
	- Abdolazimi, Liu, and Gharan (FOCS'20)

- Agreement testing:
	- Dinur and Kaufman (FOCS'11)
	- Dikstein and Dinur (FOCS'19)
- •Sampling:
	- Anari, Liu, Gharan, Vinzant (STOC'19)
	- Abdolazimi, Liu, and Gharan (FOCS'20)
- Coding Theory:
	- Jeronimo, Srivastava, and Tulsiani (STOC'21)

- Agreement testing:
	- Dinur and Kaufman (FOCS'11)
	- Dikstein and Dinur (FOCS'19)
- Sampling:
	- Anari, Liu, Gharan, Vinzant (STOC'19)
	- Abdolazimi, Liu, and Gharan (FOCS'20)
- Coding Theory:
	- Jeronimo, Srivastava, and Tulsiani (STOC'21)
- Solving CSPs:
	- Alev, Jeronimo, and Tulsiani (FOCS'19)

Random Walks on Simplicial Comlexes

Up-Down Walks

• Take $l < m$.

Up-Down Walks

• Take $l < m$.

• In an Up Walk one goes from a face $\sigma \in X(l)$ to $\tau \in X(m)$ with probability $\Pi_m(\tau)$ $\Pi_l(\sigma)$.
.
.

Up-Down Walks

• Take $l < m$.

- In an Up Walk one goes from a face $\sigma \in X(l)$ to $\tau \in X(m)$ with probability $\Pi_m(\tau)$ $\Pi_l(\sigma)$.
.
.
- In an Down Walk one goes from a face $\sigma \in X(m)$ to $\tau \in X(l)$ with probability $\Pi_l(\tau)$ $\Pi_m(\sigma)$.
.
.

Up-Down Walks

- Take $l < m$.
- In an Up Walk one goes from a face $\sigma \in X(l)$ to $\tau \in X(m)$ with probability $\Pi_m(\tau)$ $\Pi_l(\sigma)$.
.
.
- In a Down Walk one goes from a face $\sigma \in X(m)$ to $\tau \in X(l)$ with probability $\Pi_l(\tau)$ $\Pi_{m}(\sigma)$.
- An Up-Down Walk on l passing through m is constructed by combining the up and down walks above.

• In a swap walk from *l* to m we move from a face $\sigma \in X(l)$ to $\tau \in X(m)$ with probability $\frac{\Pi_{l+m}(\sigma \sqcup \tau)}{\Pi_{l}(\sigma)}$ $\Pi_l(\sigma)$.

Motivating Problem: Constraint Satisfaction Problems

• Max-Cut: A graph is given and the aim is to assign labels 0 and 1 so as maximize number of edges having different labels.

Examples

- Max-Cut: A graph is given and the aim is to assign labels 0 and 1 so as maximize number of edges having different labels.
- 3-SAT: A set of clauses (in CNF) are given and the aim is to assign the variables labels TRUE and FALSE so that number of clauses satisfied is maximized.

Examples

- Max-Cut: A graph is given and the aim is to assign labels 0 and 1 so as maximize number of edges having different labels.
- 3-SAT: A set of clauses (in CNF) are given and the aim is to assign the variables labels TRUE and FALSE so that number of clauses satisfied is maximized.
- \bullet Given linear equations modulo p with 3 variables each maximize the number of equations satisfied.

• n variables to be assigned labels from a label set Σ.

• n variables to be assigned labels from a label set Σ.

• Constraints on the variables in the form of relations on Σ.

 \bullet n variables to be assigned labels from a label set $\Sigma.$

• Constraints on the variables in the form of relations on Σ.

• The aim is to maximize the number of constraints satisfied.

 \bullet n variables to be assigned labels from a label set $\Sigma.$

• Constraints on the variables in the form of relations on Σ.

• The aim is to maximize the number of constraints satisfied.

• If all constraints are k-ary, we call the corresponding instances k-CSP instances.

• Barak, Raghavendra, Steurer (FOCS'11) gave an algorithm to solve 2-CSPs on instances with small number of large eigenvalues (small threshold rank).

- Barak, Raghavendra, Steurer (FOCS'11) gave an algorithm to solve 2-CSPs on instances with small number of large eigenvalues (small threshold rank).
- Since we can already decompose any graph into such (small threshold rank) parts with very few edges between each part we can "solve" 2-CSPs.

- Barak, Raghavendra, Steurer (FOCS'11) gave an algorithm to solve 2-CSPs on instances with small number of large eigenvalues (small threshold rank).
- Since we can already decompose any graph into such (small threshold rank) parts with very few edges between each part we can "solve" 2-CSPs.
- Alev, Jeronimo, Tulsiani (FOCS'19) gave a similar algorithm to solve k-CSPs on instances splittable hypergraphs.

- Barak, Raghavendra, Steurer (FOCS'11) gave an algorithm to solve 2-CSPs on instances with small number of large eigenvalues (small threshold rank).
- Since we can already decompose any graph into such (small threshold rank) parts with very few edges between each part we can "solve" 2-CSPs.
- Alev, Jeronimo, Tulsiani (FOCS'19) gave a similar algorithm to solve k-CSPs on instances splittable hypergraphs.
- The notion of splittability is a natural analogue of threshold rank for hypergraph based on threshold ranks of swap walk on the corresponding simplicial complex.

Can we use random walks on simplicial complexes to compute sparse cuts in hypergraph?

We show there are expanding hypergraphs with large threshold rank swap walks.

There are k-uniform hypergraph H with at least n vertices such that • $\phi_H \ge$ 1 $\frac{1}{k}$, in other words, the expansion is large, and

We show there are expanding hypergraphs with large threshold rank swap walks.

- There are k-uniform hypergraph H with at least n vertices such that
- $\phi_H \ge$ 1 $\frac{1}{k}$, in other words, the expansion is large, and
- •swap walks between dimensions bigger than 2 have threshold rank $\Omega_k(n)$.
- Also, swap walks between dimensions 1 and $k-1$ also have threshold rank $\Omega_k(n)$.

We show there are expanding hypergraphs with large threshold rank swap walks.

There are k-uniform hypergraph H with at least n vertices such that

- $\phi_H \ge$ 1 $\frac{1}{k}$, in other words, the expansion is large, and
- swap walks between dimensions bigger than 2 have threshold rank $\Omega_k(n)$.
- Also, swap walks between dimensions 1 and $k-1$ also have threshold rank $\Omega_k(n)$.

This means we cannot compute a decomposition of non-splittable H with each component being splittable.

We show there are expanding hypergraphs with large threshold rank up-down walks.

Interestingly, the up-down walk between dimensions larger than 2 on the same hypergraph also have large threshold rank.

High Dimensional Expanders

• The most popular notion of expansion for simplicial complexes used in CS.

Link Expansion

- The most popular notion of expansion for simplicial complexes used in CS.
- •In fact, all the paper mentioned before used it in some capacity.

Link Expansion

- The most popular notion of expansion for simplicial complexes used in CS.
- •In fact, all the paper mentioned before used it in some capacity.
- •So, it is again natural to ask whether the notions of hypergraph expansion and link expansion (of the corresponding simplicial complex) related.

There is an expanding hypergraph with small link expansion

There are k-uniform hypergraph H with at least n vertices such that • $\phi_H \geq$ 1 $\frac{1}{(3k)^k}$, in other words, the expansion is large

Again, we show there are expanding hypergraph with small link expansion

- There are k-uniform hypergraph H with at least n vertices such that • $\phi_H \geq$ 1 $\frac{1}{(3k)^k}$, in other words, the expansion is large, and
- \bullet link expansion is $\Theta\left(\frac{1}{n^2}\right)$ n^2 .

Questions?

Thanks