Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

> Anand Louis Rameesh Paul Arka Ray Indian Institute of Science, Bengaluru



• Relate hypergraph expansion and the spectra of various random walks on a simplicial complex.

#### The Aim

- Relate hypergraph expansion and the spectra of various random walks on a simplicial complex.
- Relate hypergraph expansion and link expansion of a simplicial complex.



 $\phi_G(S) = \frac{w(\partial(S))}{vol(S)}$ 



 $\phi_G(S) = \frac{w(\partial(S))}{vol(S)}$ 





 $\phi_G(S) = \frac{w(\partial(S))}{vol(S)}$ 







## $\lambda_2 =$ The second largest eigenvalue of the random walk matrix of a graph.

 $\begin{array}{ll} \lambda_2 = & \mbox{The second largest eigenvalue of the random walk matrix of a graph.} \\ & \frac{1-\lambda_2}{2} \leq \phi_G \leq \sqrt{2(1-\lambda_2)} \end{array}$ 

 $\begin{array}{l} \lambda_2 = & \mbox{The second largest eigenvalue of the random walk matrix of a} \\ & \mbox{graph.} \\ & \mbox{$\frac{1-\lambda_2}{2}$} \leq \phi_G \leq \sqrt{2(1-\lambda_2)} \end{array}$ 

Arora, Barak, Steurer (FOCS'10) showed that if number of large eigenvalues is large (large threshold rank) then a small sparse set can be found.

 $\begin{array}{ll} \lambda_2 = & \mbox{The second largest eigenvalue of the random walk matrix of a} \\ & \mbox{graph.} \\ & \mbox{$\frac{1-\lambda_2}{2}$} \leq \phi_G \leq \sqrt{2(1-\lambda_2)} \end{array}$ 

Arora, Barak, Steurer (FOCS'10) showed that if number of large eigenvalues is large (large threshold rank) then a small sparse set can be found. What about hypergraphs?

• One difficulty in obtaining Cheeger-like inequalities (and beyond) for hypergraph is the notion of the spectra of hypergraph is not well-defined.

- One difficulty in obtaining Cheeger-like inequalities (and beyond) for hypergraph is the notion of the spectra of hypergraph is not well-defined.
- One approach that has been explored is to define Laplacian operator for hypergraphs and consider its eigenvalue [Chan, Louis, Tang, Zhang JACM'18].

- One difficulty in obtaining Cheeger-like inequalities (and beyond) for hypergraph is the notion of the spectra of hypergraph is not well-defined.
- One approach that has been explored is to define Laplacian operator for hypergraphs and consider its eigenvalue [Chan, Louis, Tang, Zhang JACM'18].
- It is, however, not known how to exactly compute the eigenvalues for the above operator as it is non-linear (in general).

- One difficulty in obtaining Cheeger-like inequalities (and beyond) for hypergraph is the notion of the spectra of hypergraph is not well-defined.
- One approach that has been explored is to define Laplacian operator for hypergraphs and consider its eigenvalue [Chan, Louis, Tang, Zhang JACM'18].
- It is however not known how to compute such eigenvalue above operator as it is non-linear (in general).
- Instead, here we try to use eigenvalues of random walks on simplicial complexes to do so.

• An (abstract) simplicial complex is simply a downward closed hypergraph with the edge set typically denoted by *X*.

- An (abstract) simplicial complex is simply a downward closed hypergraph with the edge set typically denoted by *X*.
- Each hyperedge in a simplicial complex is called a face.

- An (abstract) simplicial complex is simply a downward closed hypergraph with the edge set typically denoted by *X*.
- Each hyperedge in a simplicial complex is called a face.
- Cardinality of a face is called the <mark>dimension</mark> of the face. The dimension of the largest faces is the dimension of the complex.

- An (abstract) simplicial complex is simply a downward closed hypergraph with the edge set typically denoted by *X*.
- Each hyperedge in a simplicial complex is called a face.
- Cardinality of a face is called the <mark>dimension</mark> of the face. The dimension of the largest faces is the dimension of the complex.
- We use X(l) for the collection of the l-dimensional faces.

• We consider simplicial complexes where all maximal faces (top faces) are of same dimension *k* (called pure complexes).

- We consider simplicial complexes where all maximal faces (top faces) are of same dimension *k* (called pure complexes).
- Use  $\Pi_l$  to denote (normalized) weights on the faces of dimension l.

- We consider simplicial complexes where all maximal faces (top faces) are of same dimension *k* (called pure complexes).
- Use  $\Pi_l$  to denote (normalized) weights on the faces of dimension l.
- The weight of the top faces can be arbitrary, i.e.,  $\Pi_k$  is arbitrary.

- We consider simplicial complexes where all maximal faces (top faces) are of same dimension *k* (called pure complexes).
- Use  $\Pi_l$  to denote (normalized) weights on the faces of dimension l.
- The weight of the top faces can be arbitrary, i.e.,  $\Pi_k$  is arbitrary.
- The weight of smaller faces is essentially the weighted "degree", i.e.,

$$\Pi_l(s) = \frac{\sum_{e \supseteq s} \Pi_k(e)}{\binom{k}{l}}.$$

• Consider a k-uniform hypergraph H = (V, E) with weight w.

- Consider a k-uniform hypergraph H = (V, E) with weight w.
- Take X to be the subsets of sets in E.

- Consider a k-uniform hypergraph H = (V, E) with weight w.
- Take X to be the subsets of sets in E.

• Let  $\Pi_k$  be W with appropriate normalization, i.e., take  $\Pi_k(e) = \frac{w(e)}{\sum_{e'} w(e')}$ 

- Consider a k-uniform hypergraph H = (V, E) with weight w.
- Take X to be the subsets of sets in E.
- Let  $\Pi_k$  be W with appropriate normalization, i.e., take  $\Pi_k(e) = \frac{w(e)}{\sum_{e'} w(e')}$ Note that this determines the other weights as well.

- Agreement testing:
  - Dinur and Kaufman (FOCS'11)
  - Dikstein and Dinur (FOCS'19)

- Agreement testing:
  - Dinur and Kaufman (FOCS'11)
  - Dikstein and Dinur (FOCS'19)
- Sampling:
  - Anari, Liu, Gharan, Vinzant (STOC'19)
  - Abdolazimi, Liu, and Gharan (FOCS'20)

- Agreement testing:
  - Dinur and Kaufman (FOCS'11)
  - Dikstein and Dinur (FOCS'19)
- Sampling:
  - Anari, Liu, Gharan, Vinzant (STOC'19)
  - Abdolazimi, Liu, and Gharan (FOCS'20)
- Coding Theory:
  - Jeronimo, Srivastava, and Tulsiani (STOC'21)

- Agreement testing:
  - Dinur and Kaufman (FOCS'11)
  - Dikstein and Dinur (FOCS'19)
- Sampling:
  - Anari, Liu, Gharan, Vinzant (STOC'19)
  - Abdolazimi, Liu, and Gharan (FOCS'20)
- Coding Theory:
  - Jeronimo, Śrivastava, and Tulsiani (STOC'21)
- Solving CSPs:
  - Alev, Jeronimo, and Tulsiani (FOCS'19)

## Random Walks on Simplicial Comlexes

Up-Down Walks

• Take l < m.

Up-Down Walks

• Take l < m.

• In an Up Walk one goes from a face  $\sigma \in X(l)$  to  $\tau \in X(m)$  with probability  $\frac{\Pi_m(\tau)}{\Pi_l(\sigma)}$ .

Up-Down Walks

• Take l < m.

• In an Up Walk one goes from a face  $\sigma \in X(l)$  to  $\tau \in X(m)$  with probability  $\frac{\Pi_m(\tau)}{\Pi_l(\sigma)}$ .

• In an Down Walk one goes from a face  $\sigma \in X(m)$  to  $\tau \in X(l)$  with probability  $\frac{\Pi_l(\tau)}{\Pi_m(\sigma)}$ .

### Up-Down Walks

- Take l < m.
- In an Up Walk one goes from a face  $\sigma \in X(l)$  to  $\tau \in X(m)$  with probability  $\frac{\Pi_m(\tau)}{\Pi_l(\sigma)}$ .
- In a Down Walk one goes from a face  $\sigma \in X(m)$  to  $\tau \in X(l)$  with probability  $\frac{\Pi_l(\tau)}{\Pi_m(\sigma)}$ .
- An Up-Down Walk on *l* passing through *m* is constructed by combining the up and down walks above.



• In a swap walk from *l* to *m* we move from a face  $\sigma \in X(l)$  to  $\tau \in X(m)$  with probability  $\frac{\prod_{l+m}(\sigma \sqcup \tau)}{\prod_{l}(\sigma)}$ .

## Motivating Problem: Constraint Satisfaction Problems



• Max-Cut: A graph is given and the aim is to assign labels 0 and 1 so as maximize number of edges having different labels.

### Examples

- $\bullet$  Max-Cut: A graph is given and the aim is to assign labels 0 and 1 so as maximize number of edges having different labels.
- 3-SAT: A set of clauses (in CNF) are given and the aim is to assign the variables labels TRUE and FALSE so that number of clauses satisfied is maximized.

### Examples

- $\bullet$  Max-Cut: A graph is given and the aim is to assign labels 0 and 1 so as maximize number of edges having different labels.
- 3-SAT: A set of clauses (in CNF) are given and the aim is to assign the variables labels TRUE and FALSE so that number of clauses satisfied is maximized.
- Given linear equations modulo *p* with **3** variables each maximize the number of equations satisfied.

#### $\bullet$ n variables to be assigned labels from a label set $\Sigma.$

 $\bullet$  n variables to be assigned labels from a label set  $\Sigma.$ 

• Constraints on the variables in the form of relations on  $\Sigma$ .

 $\bullet$  n variables to be assigned labels from a label set  $\Sigma.$ 

• Constraints on the variables in the form of relations on  $\Sigma$ .

• The aim is to maximize the number of constraints satisfied.

 $\bullet$  n variables to be assigned labels from a label set  $\Sigma.$ 

• Constraints on the variables in the form of relations on  $\Sigma$ .

- The aim is to maximize the number of constraints satisfied.
- If all constraints are k-ary, we call the corresponding instances k-CSP instances.

• Barak, Raghavendra, Steurer (FOCS'11) gave an algorithm to solve 2-CSPs on instances with small number of large eigenvalues (small threshold rank).

- Barak, Raghavendra, Steurer (FOCS'11) gave an algorithm to solve 2-CSPs on instances with small number of large eigenvalues (small threshold rank).
- Since we can already decompose any graph into such (small threshold rank) parts with very few edges between each part we can "solve" 2-CSPs.

- Barak, Raghavendra, Steurer (FOCS'11) gave an algorithm to solve 2-CSPs on instances with small number of large eigenvalues (small threshold rank).
- Since we can already decompose any graph into such (small threshold rank) parts with very few edges between each part we can "solve" 2-CSPs.
- Alev, Jeronimo, Tulsiani (FOCS'19) gave a similar algorithm to solve k-CSPs on instances splittable hypergraphs.

- Barak, Raghavendra, Steurer (FOCS'11) gave an algorithm to solve 2-CSPs on instances with small number of large eigenvalues (small threshold rank).
- Since we can already decompose any graph into such (small threshold rank) parts with very few edges between each part we can "solve" 2-CSPs.
- Alev, Jeronimo, Tulsiani (FOCS'19) gave a similar algorithm to solve k-CSPs on instances splittable hypergraphs.
- The notion of splittability is a natural analogue of threshold rank for hypergraph based on threshold ranks of swap walk on the corresponding simplicial complex.

# Can we use random walks on simplicial complexes to compute sparse cuts in hypergraph?

# We show there are expanding hypergraphs with large threshold rank swap walks.

There are k-uniform hypergraph H with at least n vertices such that •  $\phi_H \ge \frac{1}{k}$ , in other words, the expansion is large, and

# We show there are expanding hypergraphs with large threshold rank swap walks.

- There are k-uniform hypergraph H with at least n vertices such that
- $\phi_H \ge \frac{1}{k}$ , in other words, the expansion is large, and
- swap walks between dimensions bigger than 2 have threshold rank  $\Omega_k(n)$ .
- Also, swap walks between dimensions 1 and k 1 also have threshold rank  $\Omega_k(n)$ .

# We show there are expanding hypergraphs with large threshold rank swap walks.

There are k-uniform hypergraph H with at least n vertices such that

- $\phi_H \geq \frac{1}{k}$ , in other words, the expansion is large, and
- swap walks between dimensions bigger than 2 have threshold rank  $\Omega_k(n)$ .
- Also, swap walks between dimensions 1 and k 1 also have threshold rank  $\Omega_k(n)$ .

This means we cannot compute a decomposition of non-splittable H with each component being splittable.

We show there are expanding hypergraphs with large threshold rank up-down walks.

Interestingly, the up-down walk between dimensions larger than 2 on the same hypergraph also have large threshold rank.

## High Dimensional Expanders



• The most popular notion of expansion for simplicial complexes used in CS.

### Link Expansion

- The most popular notion of expansion for simplicial complexes used in CS.
- In fact, all the paper mentioned before used it in some capacity.

### Link Expansion

- The most popular notion of expansion for simplicial complexes used in CS.
- In fact, all the paper mentioned before used it in some capacity.
- So, it is again natural to ask whether the notions of hypergraph expansion and link expansion (of the corresponding simplicial complex) related.

### There is an expanding hypergraph with small link expansion

There are k-uniform hypergraph H with at least n vertices such that •  $\phi_H \ge \frac{1}{(3k)^k}$ , in other words, the expansion is large

### Again, we show there are expanding hypergraph with small link expansion

- There are k-uniform hypergraph H with at least n vertices such that •  $\phi_H \ge \frac{1}{(3k)^k}$ , in other words, the expansion is large, and
- link expansion is  $\Theta\left(\frac{1}{n^2}\right)$ .

### Questions?

## Thanks